Mixed uncertainty sets for robust combinatorial optimization
نویسندگان
چکیده
منابع مشابه
Constructing Uncertainty Sets for Robust Linear Optimization
In this paper, we propose a methodology for constructing uncertainty sets within the framework of robust optimization for linear optimization problems with uncertain parameters. Our approach relies on decision-maker risk preferences. Specifically, we utilize the theory of coherent risk measures initiated by Artzner et al. [3], and show that such risk measures, in conjunction with the support of...
متن کاملRobust combinatorial optimization with cost uncertainty
We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates better Valueat-Risk objective f...
متن کاملRobust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty∗
In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we introduce a new uncertainty class ...
متن کاملRobust combinatorial optimization with variable budgeted uncertainty
Abstract: We introduce a new model for robust combinatorial optimization where the uncertain parameters belong to the image of multifunctions of the problem variables. In particular, we study the variable budgeted uncertainty, an extension of the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted uncertainty can provide the same probabilistic guarantee as the budgeted uncer...
متن کاملRobust Optimization using Machine Learning for Uncertainty Sets
Our goal is to build robust optimization problems for making decisions based on complex data from the past. In robust optimization (RO) generally, the goal is to create a policy for decision-making that is robust to our uncertainty about the future. In particular, we want our policy to best handle the the worst possible situation that could arise, out of an uncertainty set of possible situation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Letters
سال: 2019
ISSN: 1862-4472,1862-4480
DOI: 10.1007/s11590-019-01456-3